Images in Access Databases

 -- Three Approaches

by Larry Linson,

 Microsoft Access SIG Leader

 North Texas PC User Group

(Revised 25 May 2001)

This article identifies three approaches to handling images and photos in Access databases, discusses considerations in deciding which to use in a particular set of circumstances, and describes how to implement the techniques. As described here, these approaches use only native Access and Jet database engine features, but some of them can also be used with third-party imaging controls and DLLs, as well. Static display of images is possible by using one of several controls, but the emphasis of this article is on displaying images stored separately from the control in which they are displayed. The three approaches are summarized in the table below.

Three Approaches to Images in Access�
�
Image is Stored�
Image is Displayed�
�
OLE Object in a Record�
Bound OLE Frame Control�
�
External File�
Image Control�
�
Binary Large Object (BLOB)

in a Record �
Image Control�
�

Images as OLE Objects

Access version 2 had no ability to display images without relying on a helper application that was enabled for Object Linking and Embedding (OLE) or through use of a third-party OLE custom control. The helper application was enabled through Access OLE Frame controls and is known as an OLE server. OLE frames may either be unbound, with the image linked to or embedded right in the control, or bound, displaying a field in a record in the database. The controls would initially display an icon representing the OLE imaging application, and when double clicked, would open that application in full-screen view. Later implementations enhanced the capability by allowing display of a “thumbnail” instead of an icon and by allowing the OLE server to display the picture in the OLE control itself. In addition to displaying the image, the OLE server can edit the image, if desired. Newer terminology, for later versions, replaced the OLE name with “ActiveX”, “automation” or both.

Unbound OLE controls are static displays, with the image stored right in the control. Because they are static, we will not consider them further.

Storing images as OLE Objects and using bound OLE Controls to display them is often represented as being easy to implement. That is true, if you are satisfied with the pertinent property settings that are set when you installed Access and the automation server software and if you do not need to acquire the images programmatically. In practice, the automation features of imaging software, even Microsoft’s own, tend to be sparsely documented and unintuitive – some might uncharitably characterize them as obscure. If you need different settings or want to use VBA code to acquire the image, you may have a difficult task ahead. Another disadvantage is that using this approach significantly increases storage needed because when the image is “pasted” into the OLE field, the software generates a “thumbnail sketch” in uncompressed bitmap format – you cannot prevent it doing so. That will always be many times larger than any of the commonly used compressed image file formats that you’ll likely be using to conserve disk storage space. It also requires that each computer have the automation server software installed to display the image.

Finally, if you wish to display the image at smaller size right in the bound OLE control, you may have to discover settings in the automation server or find an automation server that supports this. I found that using Internet Explorer 5 as my default server to display JPG files showed the picture; when I switched to JASC Paintshop Pro or to Microsoft PhotoDraw, only an icon would display until I double-clicked to open the picture in a separate instance of the server application.

At the Microsoft web site, http://support.microsoft.com, you can find the Access Knowledge Base. Article Q158941, “ACC: How to Load OLE Objects from a Folder into a Table” is worthwhile reading on this subject. It shows the properties of the bound OLE control that you should set. However, because I could not determine the class of the JPG image file that I was loading, I omitted that and it seems to work quite well without setting the Class property.

A related Knowledge Base Article, of at least passing interest, is Q119395, dealing with extracting the graphics metafile (for example, a .BMP, .JPG, or .GIF) from a control. This may be the key to using one of the other methods described in this article, if the only copy of the images you have is in a database. You can use these techniques to regenerate the image files and save them separately.

Image Controls

Access version 7.0 (Access 95) and later versions, include a new Control for displaying images: the Image Control.

A limited set of image file formats stored in their native file format, external to Access, can be displayed in the Image Control. The number of file formats supported can be significantly increased by installing the “graphics filters” provided with any version of Microsoft Office or with a standalone installation of Microsoft Word. These filters are not included with the standalone Microsoft Access product, and they are not installed by default. You’ll need to choose the Custom Install and specifically select them. If you are distributing your Access application with the Office Developer Edition runtime, you are not allowed to distribute the graphics filters – each user must have a license to the software that includes them and have installed them separately.

Image Controls can be used to display the images described in the following two approaches.

Images as External Files

It is simple to display images stored separately in disk files and doing so eliminates the need for the automation server and the overhead of OLE, so it is also a more responsive technique. All you have to do is to store the path and file name into the Picture property of the Image control. Although the Image Control is thrifty in its use of system resources, it has an adequate capability for displaying images and reasonable flexibility. Only the path and filename, including the file extension, need be stored in the database record, along with any related information.

On the downside, in a multi-user environment, storing the image files on each user’s hard drive raises issues of redundant storage. Alternatively, storing the images on a shared disk on the server will conserve disk space, but retrieving them across a network can impact performance. It may be noticeable even on a high-speed Local Area Network, typically sharing 10 to 100 million bits per second of bandwidth between the users. It can be distressing in multi-user environments which are significantly slower – a T1 telephone line transfers a maximum of 1.54 million bits per second and higher-speed lines are prohibitively expensive except for the most significant and vital needs. This technique may also expose the image files to outside influences such as accidental deletion or unintended updates unless security is carefully implemented and appropriate procedures are in place.

Images as Binary Large Objects (BLOBs)

Storing the images in the database, but as Binary Large Objects (BLOBs) rather than as OLE objects can reduce storage needs and eliminate the requirement for each user to have an automation server installed, but increases processing time. That is, an exact replica of the image file, without the OLE “wrapper” information, is stored in an OLE Field in the database. (All popular server databases have a field suitable for storing large amounts of binary information. In some, it is called a BLOB; others use different terminology. It is this type of field that will be used, also, if you choose to have Access store OLE Objects in a server database.)

Two methods, unique to OLE Fields and Memo Fields, are used to insert and retrieve binary information – GetChunk and AppendChunk. The names are quite descriptive. An Access Knowledge Base article, freely available from the Microsoft web site, article Number Q103257, not only describes the use of GetChunk and AppendChunk, but contains immediately usable sample VBA code. The Knowledge Base is also available as part of the (fee) subscription services, Microsoft Developer Network (MSDN) and Microsoft TechNet. A copy of the MSDN CDs is included with some editions of Microsoft Office 2000.

In this approach, the image file is located, identifying and other related information written to fields in the record, especially important is including the image file extension, using binary File I/O to read segments of the file, and appending each segment to the OLE field with the AppendChunk method. A typical “chunk” size is 32,768 bytes, but they can be either larger or smaller. The final segment (whatever is left after the last full segment) must be read and appended as the actual number of bytes remaining so the file can be exactly reconstructed.

To display the file, the record is retrieved and code is inserted in an appropriate event. Normally, that will be the OnCurrent event of a Form or the OnFormat event of a Report. The GetTempFileName Windows Application Programming Interface (API) function is used to obtain an unused file name and its .TMP suffix is replaced by the saved suffix of the image file. Repeated use of the GetChunk method retrieves file segments, and each is written to the temporary file with VBA binary File I/O. When the file is complete, the path and filename are inserted into the Picture property of an Image Control.

To avoid cluttering the user’s hard drive, it is important to use the VBA Kill statement to delete the temporary file when you are finished using it. You can reuse the same temporary file for each separate image, or you can delete it and obtain another. In either case, the final deletion should be in the Close event of the Form or Report.

Another Knowledge Base article, Q103257, not only discussed moving file information to and from OLE objects as BLOBs, but also provided the code to do that, which I found usable without any modification.

These three approaches, and variations, provide the Access developer choices in storing and displaying images. Thoughtful choice, based on the particular environment and circumstances, can minimize problems – it is surprising how often the question is posted in the comp.databases.ms-access USENET newsgroup: “I save a compressed image file, only about 25K, but my database increases by over a megabyte. What am I doing wrong?”

Images with Third-Party ActiveX Controls

If you need more functionality than is available through Image control, but OLE objects are not a good choice, there are a number of third-party ActiveX controls available for acquiring, displaying, and manipulating images. They have varying capabilities and are of varying quality. The least expensive are free, for example, the controls that are included in later versions of Windows, originally known as the “Wang Imaging Controls”, and since their acquisition, as “Kodak Imaging Controls”. They provide functionality beyond simple display, but for full functionality, you will need to license an enhanced or “professional” version. Other third-party controls, such as ImageN and others available from Pegasus Software (website http://www.pegasustools.com/) balance expense and functionality, and are designed and tested to work with Microsoft Access. You will find many other imaging software packages available, some with an impressive feature list. Before purchasing one, be sure to verify with the vendor that it was designed for, and tested with, Microsoft Access, because many ActiveX controls are not, and many do not work well, or at all, with Access.

A Note of Caution about Images and Reports

�Using either the External Files or BLOB methods can be problematical with Reports (and, though I haven’t tested it, the same may well apply to using OLE Objects in Reports). Because all pages are formatted before sending to the printer, even what seems to be a modest number of reasonably sized images can use all available memory, and may lock up the computer. Remember that images, to be displayed or printed, have to be converted from compressed form (.JPG or .GIF) into a device-independent bitmap (DIB). Even small compressed files result in megabytes of DIB per image, and memory use is multiplied if there is more than a single image on a page. You will need to experiment to determine the maximum number of images you can print in a single report, should you choose to do so. And, you should be aware that it is likely to be only a few pages.

Additionally, my Access 97 experiments with creating a “catalog” of images in external files were unsuccessful if I tried to arrange the report in multiple columns – it repeated formatting the first page until it ran out of memory in each case. All available Service Releases had been applied to the copy of Access 97 used.

The End

© Copyright 1999, 2001 L.M. Linson

Permission granted to freely distribute with copyright notice

